A single identified interneuron gates tail-shock induced inhibition in the siphon withdrawal reflex of Aplysia.

نویسندگان

  • W G Wright
  • T J Carew
چکیده

The marine mollusc Aplysia has proven very useful for a mechanistic analysis of behavioral modification. Among the stimuli used to modify the behavior of Aplysia, a noxious stimulus, tail shock, is one of the most effective. In addition to the extensively analyzed facilitatory effects of tail shock, recent work has demonstrated that it also produces marked transient inhibition in reflex responses. Here we report that functional removal (by hyperpolarization or voltage clamp) of a single inhibitory interneuron, L16, can eliminate most, if not all, of the inhibition in the siphon withdrawal reflex circuit produced by tail shock. In addition, this interneuron is strongly activated by tail shock. Finally, direct intracellular activation of L16 does not, in itself, reliably produce inhibition, suggesting that L16 plays a gating role which is necessary for the expression of inhibition in the siphon withdrawal circuit. These results support the idea that behaviorally relevant neural modulation can be gated by a small number of neurons, in this case, by a single identified cell. Moreover, they indicate that in Aplysia, as in many other systems, the modulatory effects of a noxious stimulus are often funneled through a restricted neural locus before being distributed to the circuits actually responsible for generating the behavioral output.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Serotonin mimics tail shock in producing transient inhibition in the siphon withdrawal reflex of Aplysia.

Tail shock-induced modulation of the siphon withdrawal reflex of Aplysia has recently been shown to have a transient inhibitory component, as well as a facilitatory component. This transient behavioral inhibition is also seen in a reduced preparation in which a cellular reflection of the inhibitory process, tail shock-induced inhibition of complex EPSPs in siphon motor neurons, is observed. The...

متن کامل

Identified FMRFamide-immunoreactive neuron LPL16 in the left pleural ganglion of Aplysia produces presynaptic inhibition of siphon sensory neurons.

The gill- and siphon-withdrawal reflex of Aplysia undergoes transient inhibition following noxious stimuli such as tail shock. This behavioral inhibition appears to be due in part to transient presynaptic inhibition of the siphon sensory cells, which can be mimicked by application of the peptide FMRFamide. Although FMRFamide is widespread in the Aplysia nervous system, an FMRFamide-containing i...

متن کامل

Neural circuit of tail-elicited siphon withdrawal in Aplysia. II. Role of gated inhibition in differential lateralization of sensitization and dishabituation.

In the preceding report, we observed that tail-shock-induced sensitization of tail-elicited siphon withdrawal reflex (TSW) of Aplysia was expressed ipsilaterally but that dishabituation induced by an identical tail shock was expressed bilaterally. Here we examined the mechanisms of this differential lateralization. We first isolated the modulatory pathway responsible for the induction of contra...

متن کامل

Running Head: MECHANISMS OF REFLEX PLASTICITY IN APLYSIA Neural circuit of tail-elicited siphon withdrawal in Aplysia: II. Role of gated inhibition in differential lateralization of sensitization and dishabituation

In the previous report (Bristol et al. 2003), we observed that tail shock-induced sensitization of tail-elicited siphon withdrawal reflex (TSW) of Aplysia was expressed ipsilaterally, but that dishabituation induced by an identical tail shock was expressed bilaterally. Here we examined the mechanisms of this differential lateralization. We first isolated the modulatory pathway responsible for t...

متن کامل

Differential classical conditioning of a defensive withdrawal reflex in Aplysia californica.

The defensive siphon and gill withdrawal reflex of Aplysia is a simple reflex mediated by a well-defined neural circuit. This reflex exhibits classical conditioning when a weak tactile stimulus to the siphon is used as a conditioned stimulus and a strong shock to the tail is used as an unconditioned stimulus. The siphon withdrawal component of this reflex can be differentially conditioned when ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 15 1 Pt 2  شماره 

صفحات  -

تاریخ انتشار 1995